Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 43
Filter
1.
Sci Total Environ ; 893: 164766, 2023 Oct 01.
Article in English | MEDLINE | ID: covidwho-20238295

ABSTRACT

Wastewater-based epidemiology (WBE) is a promising approach for monitoring the spread of SARS-CoV-2 within communities. Although qPCR-based WBE is powerful in that it allows quick and highly sensitive detection of this virus, it can provide limited information about which variants are responsible for the overall increase or decrease of this virus in sewage, and this hinders accurate risk assessments. To resolve this problem, we developed a next generation sequencing (NGS)-based method to determine the identity and composition of individual SARS-CoV-2 variants in wastewater samples. Combination and optimization of targeted amplicon-sequencing and nested PCR allowed detection of each variant with sensitivity comparable to that of qPCR. In addition, by targeting the receptor binding domain (RBD) of the S protein, which has mutations informative for variant classification, we could discriminate most variants of concern (VOC) and even sublineages of Omicron (BA.1, BA.2, BA.4/5, BA.2.75, BQ.1.1 and XBB.1). Focusing on a limited domain has a benefit of decreasing the sequencing reads. We applied this method to wastewater samples collected from a wastewater treatment plant in Kyoto city throughout 13 months (from January 2021 to February 2022) and successfully identified lineages of wild-type, alpha, delta, omicron BA.1 and BA.2 as well as their compositions in the samples. The transition of these variants was in good agreement with the epidemic situation reported in Kyoto city during that period based on clinical testing. These data indicate that our NGS-based method is useful for detecting and tracking emerging variants of SARS-CoV-2 in sewage samples. Coupled with the advantages of WBE, this method has the potential to serve as an efficient and low cost means for the community risk assessment of SARS-CoV-2 infection.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/genetics , Wastewater , Sewage
2.
Lancet Reg Health Am ; 21: 100497, 2023 May.
Article in English | MEDLINE | ID: covidwho-2308891

ABSTRACT

Background: The pandemic of COVID-19 raised the urgent need for safe and efficacious vaccines against SARS-CoV-2. We evaluated the efficacy and safety of a new SARS-CoV-2 virus receptor-binding domain (RBD) vaccine. Methods: A phase 3, multicentre, randomised, double-blind, placebo-controlled trial was carried out at 18 clinical sites in three provinces of the south-eastern region of Cuba. Subjects (healthy or those with controlled chronic diseases) aged between 19 and 80 years, who gave written informed consent were eligible. Subjects were randomly assigned (1:1, in blocks) to two groups: placebo, and 50 µg RBD vaccine (Abdala). The product was administered intramuscularly, 0.5 mL in the deltoid region, in a three-dose immunization schedule at 0-14-28 days. The organoleptic characteristics and presentations of the vaccine and placebo were identical. All participants (subjects, clinical researchers, statisticians, laboratory technicians, and monitors) remained blinded during the study period. The main endpoint was to evaluate the efficacy of the Abdala vaccine in the prevention of symptomatic COVID-19. The trial is registered with the Cuban Public Registry of Clinical Trials, RPCEC00000359. Findings: Between March 22 to April 03, 2021, 48,290 subjects were included (24,144 and 24,146 in the placebo and Abdala groups, respectively) in the context of predominant D614G variant circulation. The evaluation of the main efficacy outcomes occurred during May-June 2021, starting at May 3rd, in the context of high circulation of mutant viruses, predominantly VOC Beta. The incidence of adverse reactions for individuals in the placebo and Abdala vaccine groups were 1227/24,144 (5.1%) and 1621/24,146 (6.7%), respectively. Adverse reactions were mostly mild, and from the injection site, which resolved in the first 24-48 h. No severe adverse events with demonstrated cause-effect relationship attributable to the vaccine were reported. Symptomatic COVID-19 disease was confirmed in 142 participants in the placebo group (78.44 incidence per 1000 person-years, 95% confidence interval [CI], 66.07-92.46) and in 11 participants in Abdala vaccine group (6.05 incidence per 1000 person years; 95% CI 3.02-10.82). The Abdala vaccine efficacy against symptomatic COVID-19 was 92.28% (95% CI 85.74-95.82). Moderate/serious forms of COVID-19 occurred in 30 participants (28 in the placebo group and only 2 in the Abdala vaccine group) for a vaccine efficacy of 92.88% (95% CI 70.12-98.31). There were five critical patients (of which four died), all in the placebo group. Interpretation: The Abdala vaccine was safe, well tolerated, and highly effective, fulfilling the WHO target product profile for COVID-19 vaccines. Those results, along with its immunization schedule and the advantage of easy storage and handling conditions at 2-8 °C, make this vaccine an option for the use in immunization strategies as a key tool for the control of the pandemic. Funding: Centre for Genetic Engineering and Biotechnology (CIGB), Havana, Cuba.

3.
ACS Nano ; 17(7): 7017-7034, 2023 04 11.
Article in English | MEDLINE | ID: covidwho-2268634

ABSTRACT

The rapid emergence and spread of vaccine/antibody-escaping variants of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has posed serious challenges to our efforts in combating corona virus disease 2019 (COVID-19) pandemic. A potent and broad-spectrum neutralizing reagent against these escaping mutants is extremely important for the development of strategies for the prevention and treatment of SARS-CoV-2 infection. We herein report an abiotic synthetic antibody inhibitor as a potential anti-SARS-CoV-2 therapeutic agent. The inhibitor, Aphe-NP14, was selected from a synthetic hydrogel polymer nanoparticle library created by incorporating monomers with functionalities complementary to key residues of the SARS-CoV-2 spike glycoprotein receptor binding domain (RBD) involved in human angiotensin-converting enzyme 2 (ACE2) binding. It has high capacity, fast adsorption kinetics, strong affinity, and broad specificity in biologically relevant conditions to both the wild type and the current variants of concern, including Beta, Delta, and Omicron spike RBD. The Aphe-NP14 uptake of spike RBD results in strong blockage of spike RBD-ACE2 interaction and thus potent neutralization efficacy against these escaping spike protein variant pseudotyped viruses. It also inhibits live SARS-CoV-2 virus recognition, entry, replication, and infection in vitro and in vivo. The Aphe-NP14 intranasal administration is found to be safe due to its low in vitro and in vivo toxicity. These results establish a potential application of abiotic synthetic antibody inhibitors in the prevention and treatment of the infection of emerging or possibly future SARS-CoV-2 variants.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Angiotensin-Converting Enzyme 2 , Polymers , Antibodies, Neutralizing/pharmacology , Antibodies, Neutralizing/therapeutic use , Protein Binding , Antibodies, Viral , Spike Glycoprotein, Coronavirus
4.
Microbiol Spectr ; : e0278322, 2023 Mar 14.
Article in English | MEDLINE | ID: covidwho-2282988

ABSTRACT

Inactivated SARS-CoV-2 vaccines have been deployed in a significant portion of the world population, who have widely varied responses to vaccination. Understanding this differential response would help the development of new vaccines for non-responders. Here, we conducted surveillance of anti-Spike receptor-binding domain (RBD) antibody levels in a large cohort of 534 healthy Chinese subjects vaccinated with two doses of inactivated SARS-CoV-2 vaccines. We show that the positive rate of antibodies among vaccinated subjects rapidly wanes as the interval between antibody testing and vaccination increases (14 to 119 days: 81.03%, 363 of 448 subjects; 120 to 149 days: 46.43%, 13 of 28 subjects; more than 150 days: 20%, 1 of 5 subjects). However, the antibodies were maintained at high levels in 16 convalescent COVID-19 patients at more than 150 days after recovery. We also found that increased age and body mass index are associated with decreased antibody levels. Vaccinated subjects who fail to produce antibodies display impaired B-cell activating humoral immunity, which was confirmed in COVID-19 patients without antibodies detected at 4 to 18 days after diagnosis. IMPORTANCE Our study illustrates the immune responses engaged by encountering antigen, highlighting the critical roles of B-cell activating humoral immunity in the body's antibody production.

5.
Eur J Med Chem ; 252: 115272, 2023 Apr 05.
Article in English | MEDLINE | ID: covidwho-2250678

ABSTRACT

Although vaccines are obviously mitigating the COVID-19 pandemic diffusion, efficient complementary antiviral agents are urgently needed to combat SARS-CoV-2. The viral papain-like protease (PLpro) is a promising therapeutic target being one of only two essential proteases crucial for viral replication. Nevertheless, it dysregulates the host immune sensing response. Here we report repositioning of the privileged 1,2,4-oxadiazole scaffold as promising SARS-CoV-2 PLpro inhibitor with potential viral entry inhibition profile. The design strategy relied on mimicking the general structural features of the lead benzamide PLpro inhibitor GRL0617 with isosteric replacement of its pharmacophoric amide backbone by 1,2,4-oxadiazole core. Inspired by the multitarget antiviral agents, the substitution pattern was rationalized to tune the scaffold's potency against other additional viral targets, especially the spike receptor binding domain (RBD) that is responsible for the viral invasion. The Adopted facial synthetic protocol allowed easy access to various rationally substituted derivatives. Among the evaluated series, the 2-[5-(pyridin-4-yl)-1,2,4-oxadiazol-3-yl]aniline (5) displayed the most balanced dual inhibitory potential against SARS-CoV-2 PLpro (IC50=7.197 µM) and spike protein RBD (IC50 = 8.673 µM), with acceptable ligand efficiency metrics, practical LogP (3.8) and safety profile on Wi-38 (CC50 = 51.78 µM) and LT-A549 (CC50 = 45.77 µM) lung cells. Docking simulations declared the possible structural determinants of activities and enriched the SAR data for further optimization studies.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/metabolism , Virus Internalization , Pandemics , Antiviral Agents/chemistry , Endopeptidases/metabolism , Peptide Hydrolases/metabolism
6.
J Biomol Struct Dyn ; : 1-10, 2022 Feb 08.
Article in English | MEDLINE | ID: covidwho-2247954

ABSTRACT

The battle against SARS-CoV-2 coronavirus is the focal point for the global pandemic that has affected millions of lives worldwide. The need for effective and selective therapeutics for the treatment of the disease caused by SARS-CoV-2 is critical. Herein, we performed a hierarchical computational approach incorporating molecular docking studies, molecular dynamics simulations, absolute binding energy calculations, and steered molecular dynamics simulations for the discovery of potential compounds with high affinity towards SARS-CoV-2 spike RBD. By leveraging ZINC15 database, a total of 1282 in-clinical and FDA approved drugs were filtered out from nearly 0.5 million protomers of relatively large compounds (MW > 500, and LogP ≤ 5). Our results depict plausible mechanistic aspects related to the blockage of SARS-CoV-2 spike RBD by the top hits discovered. We found that the most promising candidates, namely, ZINC95628821, ZINC95617623, ZINC3979524, and ZINC261494658, strongly bind to the spike RBD and interfere with the human ACE2 receptor. These findings accelerate the rational design of selective inhibitors targeting the spike RBD protein of SARS-CoV-2.Communicated by Ramaswamy H. Sarma.

7.
Comput Biol Med ; 152: 106392, 2023 01.
Article in English | MEDLINE | ID: covidwho-2245261

ABSTRACT

COVID-19 caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) emerged first around December 2019 in the city of Wuhan, China. Since then, several variants of the virus have emerged with different biological properties. This pandemic has so far led to widespread infection cycles with millions of fatalities and infections globally. In the recent cycle, a new variant omicron and its three sub-variants BA.1, BA.2 and BA.3 have emerged which seems to evade host immune defences and have brisk infection rate. Particularly, BA.2 variant has shown high transmission rate over BA.1 strain in different countries including India. In the present study, we have evaluated a set of eighty drugs/compounds using in silico docking calculations in omicron and its variants. These molecules were reported previously against SARS-CoV-2. Our docking and simulation analyses suggest differences in affinity of these compounds in omicron and BA.2 compared to SARS-CoV-2. These studies show that neohesperidin, a natural flavonoid found in Citrus aurantium makes a stable interaction with spike receptor domain of omicron and BA.2 compared to other variants. Free energy binding analyses further validates that neohesperidin forms a stable complex with spike RBD in omicron and BA.2 with a binding energy of -237.9 ± 18.7 kJ/mol and -164.1 ± 17.5 kJ/mol respectively. Key residual differences in the RBD interface of these variants form the basis for differential interaction affinities with neohesperidin as drug binding site overlaps with RBD-human ACE2 interface. These data might be useful for the design and development of novel scaffolds and pharmacophores to develop specific therapeutic strategies against these novel variants.


Subject(s)
COVID-19 , Hesperidin , Humans , SARS-CoV-2 , Computer Simulation
8.
Biomedicines ; 11(2)2023 Feb 09.
Article in English | MEDLINE | ID: covidwho-2235943

ABSTRACT

Interactions of key amyloidogenic proteins with SARS-CoV-2 proteins may be one of the causes of expanding and delayed post-COVID-19 neurodegenerative processes. Furthermore, such abnormal effects can be caused by proteins and their fragments circulating in the body during vaccination. The aim of our work was to analyze the effect of the receptor-binding domain of the coronavirus S-protein domain (RBD) on alpha-synuclein amyloid aggregation. Molecular modeling showed that the predicted RBD complex with monomeric alpha-synuclein is stable over 100 ns of molecular dynamics. Analysis of the interactions of RBD with the amyloid form of alpha-synuclein showed that during molecular dynamics for 200 ns the number of contacts is markedly higher than that for the monomeric form. The formation of the RBD complex with the alpha-synuclein monomer was confirmed immunochemically by immobilization of RBD on its specific receptor ACE2. Changes in the spectral characteristics of the intrinsic tryptophans of RBD and hydrophobic dye ANS indicate an interaction between the monomeric proteins, but according to the data of circular dichroism spectra, this interaction does not lead to a change in their secondary structure. Data on the kinetics of amyloid fibril formation using several spectral approaches strongly suggest that RBD prevents the amyloid transformation of alpha-synuclein. Moreover, the fibrils obtained in the presence of RBD showed significantly less cytotoxicity on SH-SY5Y neuroblastoma cells.

9.
Molecules ; 27(24)2022 Dec 15.
Article in English | MEDLINE | ID: covidwho-2163531

ABSTRACT

To date, some succeeding variants of SARS-CoV-2 have become more contagious. This virus is known to enter human cells by binding the receptor-binding domain (RBD) of spike protein with the angiotensin-converting enzyme 2 (ACE2), the latter being a membrane protein that regulates the renin-angiotensin system. Since the host cell receptor plays a critical role in viral entry, inhibition of the RBD-ACE2 complex is a promising strategy for preventing COVID-19 infection. In the present communication, we propose and utilize an approach based on the generation of a complex of pharmacophore models and subsequent Induced Fit Docking (IFD) to identify potential inhibitors of the main binding sites of the Omicron SARS-CoV-2 RBD(S1)-ACE2 complex (PDB ID: 7T9L) among a number of natural products of various types and origins. Several natural compounds have been found to provide a high affinity for the receptor of interest. It is expected that the present results will stimulate further research aimed at the development of specialized drugs against this virus.


Subject(s)
Angiotensin-Converting Enzyme 2 , COVID-19 , Humans , SARS-CoV-2 , Pharmacophore , Binding Sites , Protein Binding
10.
Natural Product Communications ; 17(11), 2022.
Article in English | EMBASE | ID: covidwho-2138423

ABSTRACT

Despite the contemporary advancements in the field of science and medicine, combating the coronavirus disease 2019 (COVID-19) is extremely challenging in many aspects as the virus keeps spreading and mutating rapidly. As there is no effective and conclusive drug therapy to date, it is crucial to explore plant-based natural compounds for their potential to inhibit SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2). Recent research highly focuses on screening various phytochemicals to elucidate their anti-viral efficacy. However, very few studies were published investigating the anti-viral efficacy of ginsenosides. Hence, the main aim of this study was to investigate the inhibitory potential of the available 122 ginsenosides from Panax ginseng against SARS-CoV-2-related proteins using a molecular docking and molecular dynamics approach. The major bioactive compounds "ginsenosides" of P. ginseng were docked to six vital SAR-CoV-2 host entry-related proteins such as ACE2, Spike RBD, ACE2 and Spike RBD complex, Spike (pre-fused), Spike (post-fused), and HR domain, with lowest binding energies of -9.5 kcal/mol, -8.1 kcal/mol, -10.4 kcal/mol, -10.4 kcal/mol, -9.3 kcal/mol, and -8.2 kcal/mol, respectively. Almost all the ginsenosides have shown low binding energies and were found to be favourable for efficient docking and resultant inhibition of the viral proteins. However, ACE2 has shown the highest interaction capability. Hence, the top five ginsenosides with the highest binding energy with ACE2 were subjected to MD, post MD analysis, and MM/PBSA calculations. MD simulation results have shown higher stability, flexibility, and mobility of the selected compounds. Additionally, MM-PBSA also affirms the docking results. The results obtained from this study have provided highly potential candidates for developing natural inhibitors against COVID-19. Copyright © The Author(s) 2022.

11.
Pathogens ; 11(12)2022 Nov 29.
Article in English | MEDLINE | ID: covidwho-2143431

ABSTRACT

The public health threat from severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) continues to intensify with emerging variants of concern (VOC) aiming to render COVID-19 vaccines/infection-induced antibodies redundant. The SARS-CoV-2 spike protein is responsible for receptor binding and infection of host cells making it a legitimate antibody target. Antibodies mostly target epitopes in the receptor binding domain (RBD). Mutations occurring within epitopes influence antibody specificity and function by altering their 3D architecture. However, the mechanisms by which non-epitope mutations in the RBD influence antibody specificity and function remain a mystery. We used Protein Data Bank (PDB) deposited 3D structures for the original, Beta, Delta, BA.1, and BA.2 RBD proteins in complex with either neutralizing antibodies or Angiotensin-Converting Enzyme 2 (ACE2) to elucidate the structural and mechanistic basis for neutralizing antibody evasion driven by non-epitope amino acid substitutions in the RBD. Since the mechanism behind the extensively reported functional discrepancies between the same antibody when used individually and when used in an antibody cocktail is lacking, we explored the structural basis for this inconsistency. Finally, since SARS-CoV-2 antibodies are viral mutagens, we deciphered determinants for antibody-pressured amino acid substitutions. On the one hand, we show that non-epitope mutations in the RBD domain of SARS-CoV-2 VOC influence the formation of hydrogen bonds in the paratope-epitope interface by repositioning RBD amino-acid sidechains (AASCs). This increases the distance between complementary donor/acceptor atoms on paratope and epitope AASCs leading to weaker or the complete prevention of the formation of hydrogen bonds in the paratope-epitope interface. On the other hand, we show that SARS-CoV-2 VOC employ the same strategy to simultaneously search for complementary donor/acceptor atoms on ACE2 AASCs to form new interactions, potentially favoring increased viral transmission. Additionally, we illustrate that converting the spike protein to an RBD, a deletion mutation, also repositions epitope AASCs and that AASC interactions in the paratope-epitope interface vary when an antibody is used individually versus when utilized as a cocktail with other antibodies. Finally, we show that the process of substituting immunogenic RBD amino acids begins with the repositioning of their AASCs induced by immune/antibody pressure. We show that donor/acceptor atoms from any amino acid can determine cross-reactivity instead, provided they possess and present spatially pairing donor/acceptor atoms. By studying structural alignments for PDB deposited antibody-RBD 3D structures and relating them to published binding and neutralization profiles of the same antibodies, we demonstrate that minor structural alterations such as epitope AASC repositioning have a major impact on antibody effectiveness and, hence, should receive adequate attention given that protein structure dictates protein function.

12.
J Clin Virol Plus ; 2(4): 100124, 2022 Nov.
Article in English | MEDLINE | ID: covidwho-2119922

ABSTRACT

A cross-sectional SARS-CoV-2 serosurvey was conducted after the Omicron surge in Jamaica using 1,540 samples collected during March - May 2022 from persons attending antenatal, STI and non-communicable diseases clinics in Kingston, Jamaica. SARS-CoV-2 spike receptor binding domain (RBD) and/or nucleocapsid IgG antibodies were detected for 88.4% of the study population, with 77.0% showing evidence of previous SARS-CoV-2 infection. Of persons previously infected with SARS-CoV-2 and/or with COVID-19 vaccination, 9.6% were negative for spike RBD IgG, most of which were unvaccinated previously infected persons. Amongst unvaccinated previously infected people, age was associated with testing spike RBD IgG negative. When considering all samples, median spike RBD IgG levels were 131.6 BAU/mL for unvaccinated persons with serological evidence of past infection, 90.3 BAU/mL for vaccinated persons without serological evidence of past infection, and 896.1 BAU/mL for vaccinated persons with serological evidence of past infection. Our study of the first reported SARS-CoV-2 serosurvey in Jamaica shows extensive SARS-CoV-2 population immunity, identifies a substantial portion of the population lacking spike RBD IgG, and provides additional evidence for increasing COVID-19 vaccine coverage in Jamaica.

13.
J Biomol Struct Dyn ; : 1-17, 2022 Oct 27.
Article in English | MEDLINE | ID: covidwho-2087509

ABSTRACT

The lack of any effective cure for the infectious COVID-19 disease has created a sense of urgency and motivated the search for effective antiviral drugs. Abyssomicins are actinomyces-derived spirotetronates polyketides antibiotics known for their promising antibacterial, antitumor, and antiviral activities. In this study, computational approaches were used to investigate the binding mechanism and the inhibitory ability of 38 abyssomicins against the main protease (Mpro) and the spike protein receptor-binding domain (RBD) of the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2). The results identified abyssomicins C, J, W, atrop-O-benzyl abyssomicin C, and atrop-O-benzyl desmethyl abyssomicin C as the most potential inhibitors of Mpro and RBD with binding energy ranges between -8.1 and -9.9 kcal mol-1; and between -6.9 and -8.2 kcal mol-1, respectively. Further analyses of physicochemical properties and drug-likeness suggested that all selected active abyssomicins, with the exception of abyssomicin J, obeyed Lipinski's rule of five. The stability of protein-ligand complexes was confirmed by performing molecular dynamics simulation for 100 ns and evaluating parameters such as such as root mean square deviation (RMSD), root mean square fluctuation (RMSF), radius of gyration (Rg), solvent accessible surface area (SASA), total number of contacts, and secondary structure. Prime/MM-GBSA (Molecular Mechanics-General Born Surface Area) and principal component analysis (PCA) analyses also confirmed the stable nature of protein-ligand complexes. Overall, the results showed that the studied abyssomicins have significant interactions with the selected protein targets; therefore, they were deemed viable candidates for further in vitro and in vivo evaluation. Communicated by Ramaswamy H. Sarma.

14.
Vaccine ; 40(45): 6499-6511, 2022 Oct 26.
Article in English | MEDLINE | ID: covidwho-2076793

ABSTRACT

BACKGROUND: Vaccination of patients with chronic kidney disease (CKD) and kidney transplants (KTs) may achieve a less robust immune response. Understanding such immune responses is crucial for guiding current and future vaccine dosing strategies. METHODS: This prospective, observational study estimated the immunogenicity of humoral and cellular responses of two SARS-CoV-2 vaccines in different patient groups with CKD compared with controls. Secondary outcomes included adverse events after vaccination and the incidence of COVID-19 breakthrough infection, including illness severity. RESULTS: In total, 212 patients received ChAdOx1 nCoV-19 (89.62 %) or inactivated vaccines (10.38 %).The antibody response against the S protein was analyzed at T0 (before the first injection), T1 (before the second injection), and T2 (12 weeks after the second injection). Seroconversion occurred in 92.31 % of controls at T2 and in 100 % of patients with CKD, 42.86 % undergoing KT, 80.18 % of hemodialysis (HD), and 0 % of patients undergoing continuous ambulatory peritoneal dialysis (CAPD) at T2 of the ChAdOx1 nCoV-19 vaccine. Neutralizing antibody levels by surrogate virus neutralization test were above the protective level at T2 in each group. The KT group exhibited the lowest neutralizing antibody and T cell response. Blood groups O and vaccine type were associated with good immunological responses. After the first dose, 14 individuals (6.6 out of the total population experienced COVID-19 breakthrough infection. CONCLUSION: Immunity among patients with CKD and HD after vaccination was strong and comparable with that of healthy controls. Our study suggested that a single dose of the vaccine is not efficacious and delays may result in breakthrough infection. Some blood groups and types of vaccine can affect the immune response.


Subject(s)
Blood Group Antigens , COVID-19 , Kidney Transplantation , Renal Insufficiency, Chronic , Humans , COVID-19 Vaccines , COVID-19/prevention & control , SARS-CoV-2 , ChAdOx1 nCoV-19 , Prospective Studies , Vaccination , Antibodies, Neutralizing , Renal Insufficiency, Chronic/complications , Antibody Formation , Vaccines, Inactivated , Antibodies, Viral
15.
Cell Rep Med ; 3(8): 100716, 2022 08 16.
Article in English | MEDLINE | ID: covidwho-2069794

ABSTRACT

The high number of mutations in the Omicron variant of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causes its immune escape. We report a longitudinal analysis of 111 vaccinated individuals for their antibody levels up to 6 months after the third dose of the BNT162b2 vaccine. After the third dose, the antibody levels decline but less than after the second dose. The booster dose remarkably increases the serum ability to block wild-type or Omicron variant spike protein's receptor-binding domain (RBD) interaction with the angiotensin-converting enzyme 2 (ACE2) receptor, and these protective antibodies persist 3 months later. Three months after the booster dose, memory CD4+ and CD8+ T cells to the wild-type and Omicron variant are detectable in the majority of vaccinated individuals. Our data show that the third dose restores the high levels of blocking antibodies and enhances T cell responses to Omicron.


Subject(s)
COVID-19 , Vaccines , Antibodies , BNT162 Vaccine , CD4-Positive T-Lymphocytes , CD8-Positive T-Lymphocytes , COVID-19/prevention & control , Humans , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/genetics , Viral Envelope Proteins/chemistry
16.
Int J Mol Sci ; 23(19)2022 Sep 27.
Article in English | MEDLINE | ID: covidwho-2066122

ABSTRACT

Vaccination against SARS-CoV-2 to prevent COVID-19 is highly recommended for immunocompromised patients with autoimmune rheumatic and musculoskeletal diseases (aiRMDs). Little is known about the effect of booster vaccination or infection followed by previously completed two-dose vaccination in aiRMDs. We determined neutralizing anti-SARS-CoV-2 antibody levels and applied flow cytometric immunophenotyping to quantify the SARS-CoV-2 reactive B- and T-cell mediated immunity in aiRMDs receiving homologous or heterologous boosters or acquired infection following vaccination. Patients receiving a heterologous booster had a higher proportion of IgM+ SARS-CoV-2 S+ CD19+CD27+ peripheral memory B-cells in comparison to those who acquired infection. Biologic therapy decreased the number of S+CD19+; S+CD19+CD27+IgG+; and S+CD19+CD27+IgM+ B-cells. The response rate to a booster event in cellular immunity was the highest in the S-, M-, and N-reactive CD4+CD40L+ T-cell subset. Patients with a disease duration of more than 10 years had higher proportions of CD8+TNF-α+ and CD8+IFN-γ+ T-cells in comparison to patients who were diagnosed less than 10 years ago. We detected neutralizing antibodies, S+ reactive peripheral memory B-cells, and five S-, M-, and N-reactive T-cells subsets in our patient cohort showing the importance of booster events. Biologic therapy and <10 years disease duration may confound anti-SARS-CoV-2 specific immunity in aiRMDs.


Subject(s)
COVID-19 , SARS-CoV-2 , Antibodies, Neutralizing , Antibodies, Viral , CD40 Ligand , COVID-19/prevention & control , COVID-19 Vaccines , Humans , Immunoglobulin G , Immunoglobulin M , Tumor Necrosis Factor-alpha , Vaccination
18.
Int J Pept Res Ther ; 28(5): 146, 2022.
Article in English | MEDLINE | ID: covidwho-2000039

ABSTRACT

Different SARS-CoV-2 new variants emerged and spread during the past few months, sparking infections and death counts. The new variant B.1.617 (delta variant) sparked in India in the past few months, causing the highest records. The B.1.617 variant of SARS-CoV-2 has the double mutations E484Q and L452R on its spike Receptor Binding Domain (RBD). The first mutation is like the reported South African and the Brazilian variants (501.V2 and B.1.1.248). This mutation lies in the region C480-C488, which we predicted before to be recognized by the host-cell receptor; Glucose Regulated Protein 78 (GRP78). In the current study, we test the binding affinity of the host-cell receptor GRP78 to the delta variant spike RBD using molecular docking and molecular dynamics simulations of up to 100 ns. Additionally, the ACE2-RBD is tested by protein-protein docking. The results reveal equal average binding affinities of the GRP78 against wildtype and delta variant spikes. This supports our previous predictions of the contribution of GRP78 in SARS-CoV-2 spike recognition as an auxiliary route for entry.

19.
Crit Care ; 26(1): 171, 2022 06 09.
Article in English | MEDLINE | ID: covidwho-1951302

ABSTRACT

BACKGROUND: SARS-CoV-2 infection leads to acute lung injury (ALI) and acute respiratory distress syndrome (ARDS). Both clinical data and animal experiments suggest that the renin-angiotensin system (RAS) is involved in the pathogenesis of SARS-CoV-2-induced ALI. Angiotensin-converting enzyme 2 (ACE2) is the functional receptor for SARS-CoV-2 and a crucial negative regulator of RAS. Recombinant ACE2 protein (rACE2) has been demonstrated to play protective role against SARS-CoV and avian influenza-induced ALI, and more relevant, rACE2 inhibits SARS-CoV-2 proliferation in vitro. However, whether rACE2 protects against SARS-CoV-2-induced ALI in animal models and the underlying mechanisms have yet to be elucidated. METHODS AND RESULTS: Here, we demonstrated that the SARS-CoV-2 spike receptor-binding domain (RBD) protein aggravated lipopolysaccharide (LPS)-induced ALI in mice. SARS-CoV-2 spike RBD protein directly binds and downregulated ACE2, leading to an elevation in angiotensin (Ang) II. AngII further increased the NOX1/2 through AT1R, subsequently causing oxidative stress and uncontrolled inflammation and eventually resulting in ALI/ARDS. Importantly, rACE2 remarkably reversed SARS-CoV-2 spike RBD protein-induced ALI by directly binding SARS-CoV-2 spike RBD protein, cleaving AngI or cleaving AngII. CONCLUSION: This study is the first to prove that rACE2 plays a protective role against SARS-CoV-2 spike RBD protein-aggravated LPS-induced ALI in an animal model and illustrate the mechanism by which the ACE2-AngII-AT1R-NOX1/2 axis might contribute to SARS-CoV-2-induced ALI.


Subject(s)
Acute Lung Injury , Angiotensin-Converting Enzyme 2 , COVID-19 , Respiratory Distress Syndrome , Acute Lung Injury/prevention & control , Acute Lung Injury/virology , Angiotensin II , Angiotensin-Converting Enzyme 2/therapeutic use , Animals , COVID-19/complications , Humans , Lipopolysaccharides , Mice , Recombinant Proteins/therapeutic use , SARS-CoV-2 , Spike Glycoprotein, Coronavirus
20.
Int J Mol Sci ; 23(10)2022 May 16.
Article in English | MEDLINE | ID: covidwho-1855647

ABSTRACT

The dramatic experience with SARS-CoV-2 has alerted the scientific community to be ready to face new epidemics/pandemics caused by new variants. Among the therapies against the pandemic SARS-CoV-2 virus, monoclonal Antibodies (mAbs) targeting the Spike glycoprotein have represented good drugs to interfere in the Spike/ Angiotensin Converting Enzyme-2 (ACE-2) interaction, preventing virus cell entry and subsequent infection, especially in patients with a defective immune system. We obtained, by an innovative phage display selection strategy, specific binders recognizing different epitopes of Spike. The novel human antibodies specifically bind to Spike-Receptor Binding Domain (RBD) in a nanomolar range and interfere in the interaction of Spike with the ACE-2 receptor. We report here that one of these mAbs, named D3, shows neutralizing activity for virus infection in cell cultures by different SARS-CoV-2 variants and retains the ability to recognize the Omicron-derived recombinant RBD differently from the antibodies Casirivimab or Imdevimab. Since anti-Spike mAbs, used individually, might be unable to block the virus cell entry especially in the case of resistant variants, we investigated the possibility to combine D3 with the antibody in clinical use Sotrovimab, and we found that they recognize distinct epitopes and show additive inhibitory effects on the interaction of Omicron-RBD with ACE-2 receptor. Thus, we propose to exploit these mAbs in combinatorial treatments to enhance their potential for both diagnostic and therapeutic applications in the current and future pandemic waves of coronavirus.


Subject(s)
COVID-19 Drug Treatment , SARS-CoV-2 , Antibodies, Monoclonal , Antibodies, Monoclonal, Humanized , Antibodies, Neutralizing , Antibodies, Viral , Epitopes , Humans , Spike Glycoprotein, Coronavirus/chemistry , Viral Envelope Proteins/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL